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1 Introduction

One of the most difficult problems in coustraint solving comes [rom disjunctive constraints. Several techniques
have been proposed by the Artificial Intelligence community to deal with this kind of constraints. Because
of its theoretical and practical interest, manipulation of disjunctive constraints in Constraint Satisfaction
Problems (CSP) is a hot research topic {13, 1, 16]. In this work we present an approach for systematic
manipulation of disjunctive constraints when verifying local consistency. We first propose to decompose
a set of constraints in two subproblems, the first one with all the elementary constraints and the second
one with all the disjunctive constraints. Then we apply a graph decomposition algorithm on the second
subproblem in order to obtain several sets of disjunctive constraints whose set of variables are disjoints. We
verify local consistency for each subproblem and the results, elimination of impossible values for the variables,
are communicated through membership constraints. The algorithm stops when there are no more changes in
the membership constraints. We prove that if we can decompose the set of disjunctive constraints in at least
two subproblems we can do better than the existing approaches, like choice point. We have implemented
these ideas in a prototype for solving CSP and we have carried out soine sinple benchmarks to validate this
theoretical result. We have realised that this general approach to manipulate CSP fits very well in the case
of scheduling problems, one of the most successful applications of constraint programuning [3]. This paper
is organised as follows. Section 2 presents CSP, its definition and a brief description of techniques used to
solve them. Section 3 introduces disjunctive constraints and presents different approaches used by the CSP
community to deal with them. In section 4 we present our approach in detail. Finally. in section 5 we
conclude the paper.

2 CSP

In this section we present a forinal definition of CSP and briefly describe techniques used to solve them. More
details can be found in {2].

2.1 Definitions

An elementary constraint ¢’ is an atomic formula built on a signature © = (F,P), where F is a set of
ranked function symbols and P a set of ranked predicate symbols. and a denumerable set .Y of variable
symbols '. Elementary constraints are combined with usual first-order counectives. We denote the set of
constraints built from ¥ and .¥ by C(Z,.V). Given a structure D = (D.[), where I is an interpretation
function and D the domain of this interpretation, a (..U, D)-CSP is any set C' = (¢; A ... A c.) such that
¢/ € C(S,.¥) Vi=1,...,n. A solution of ¢’ is a mapping from .Y to D that associates to each variable r € .¥
an element in D such that ¢’ is satisfiable in D. A solution of C is a mapping such that all constraints c;eC
are satisfiable in D. Given a variable r € .¥ and a non-empty set D, C D, the membership constraint of z
is a relation given by x € D,. We use these membership constraints to make explicit the domain reduction
process during the constraint solving. In practice, the sets D, have to be set up to D at the beginning of
the constraint solving process, and constraint propagation will eventually reduce them. As all first-order
connectives can be expressed in terms of conjunctions and disjunctions we consider the set of counstraints C
as follows

C= /\ (¢ €" D) A A(L:) A /\ (cl; v c:?;)

Te¥ i€l jeJ

!For clarity, constraints are syntactically distinguished from {ormulae by a question mark exponent on their predicate symbols.
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where I is the set of elementary constraints and J the set of disjunctive constraints. For simplicity reason
we will only consider disjunctive constraints as disjnnctions of only two elementary constraints. We use e,
n, and a to denote the number of constraints, the number of variables and the size of the variable’s domain,
respectively. in a CSP. and we also denote by Var(c’) the set of variables in a constraint c¢’. In this work we
only consider Binary CSP, i.e.. problems where at most two variables are involved in each constraint 2.

2.2 Solving CSP

Typical tasks defined in connection with CSP are to determine whether a solution exists, and to find one or
all the solutions. In this section we present three categories of techniques used in processing CSP: Searching
Techniques, Problem Reduction, and Hybrid Techniques. Kumar's work [7] is an excellent survey on this
topic.

Searching Techniques in CSP  Searching consists of techniques for systematic exploration of the space
of all solutions. The simplest force brute algorithm generate-and-test, also called trial-and-error search, is
based on the idea of testing every possible combination of values to obtain a solution of a CSP. This generate-
and-test algorithm is correct but it faces an obvious combinatorial explosion. Intending to avoid that poor
performance the basic algorithm commonly used for solving CSPs is the simple backtracking search algorithm,
also called standard backtracking or depth-first search with chronological backtracking, which is a general search
strategy that has been widely used in problem solving. Although backtracking is much better than generate
and test, one almost always can observe pathological behaviour. Bobrow and Raphael have called this class
of behaviour thrashing [1]. Thrashing can be defined as the repeated exploration of subtrees of the backtrack
search tree that differ only in inessential features. such as the assignments to variables irrelevant to the failure
of the subtrees. The time complexity of backtracking is O(a™e), i.e., the time taken to find a solution tends
to be exponential in the number of variables [9]. In order to avoid the resolution of this kind of complex
problem, the notion of problem reduction has been developed.

Problem Reduction in CSP  Problem reduction techniques transform a CSP to an equivalent problem
by reducing the values that the variables can take. Problem reduction is often refered to as consistency
maintenance [12]. Consistency concepts have been defined in order to identify in the search space classes of
combinations of values which could not appear together in any set of values satisfving the set of constraints.
Mackworth [3] proposes three levels of consistency: node, arc and path-consistency. These names come [rom
the fact that general graphs have been used to represent binary CSP [12]. The most widely used level of
consistency is arc consistency whose definition is the following:

Given the variables z;,xr; € U and the constraints c?(.z';).c;(rj),cz(x;,:L'j) € C, the arc associated to

? . . .
¢ (xi, xj) is consistent if

Vo €ap 3’ €nia € Solp(z; € Dy, Aci(2))

=o' € Solp(r; € D, A (.‘;(,r.j) Acila(z), z;5))-

A network of constraints is are-consestent it all its ares are consistent. In [10] Mchr and Henderson propose
the algorithm AC-4 whose worst-case time complexity is O(ea®) and they prove its optimality in terms of
time. -

2 As a disjunction is considered itsell as a constraint we do not allow more than two variables involved in a disjunctive
constraint.
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It is important to realize that the varying forms of consistency algorithms can be seen as approzimation
algorithms, in that they impose necessary but not always sufficient conditions for the existence of a solution
on a CSP, that is why they are often refered to as local consistency algorithms.

Hybrid Techniques As backtracking suffers from thrashing and consistency algorithms can only eliminate
local inconsistencies, hybrid techniques have been developed. In this way we obtain a complete algorithm
that can solve all problems and where thrashing has been reduced. Hybrid techniques integrate constraint
propagation algorithms into backtracking in the following way: whenever a variable is instantiated 3, a
new CSP is created; a constraint propagation algorithm can be applied to remove local inconsistencies of
these new CSPs [17]. Embedding consistency techniques inside backtracking algorithms is called Hybrid
Techniques. A lot of research has been done on algorithms that essentially fit the previous format. In
particular, Nadel [11] empirically compares the performance of the following algorithms: Generate and Test,
Simple Backtracking, Forward Checking, Partial Lookahead, Full Lookahead, and Really Full Lookahead.
These algorithms primarily differ in the degrees of arc consistency performed at the nodes of the search tree.

3 Disjunctive Constraints

The combination of two elementary constraints with a disjunction operator is called a disjunctive constraint.
A lot of combinatorial problems involve this kind of constraints. For example, in scheduling problems these
constraints conie from the fact that several tasks must use the same resource and the limited capacity of that
resource does not allow to perform all tasks at a same time [14]. Let Task;; the start time of task i of job
Jj and d;j the duration of task i of job j. On a machine performing a simple task at a time, the capacity
constraints enforce the mutual exclusion for each pair of tasks assigned to the same machine. If we consider
task k of jobs 7 and J, the fact that on machine & Jjob i runs before job j or vice versa can be expressed by
the following disjunctive constraint

Tasky; 2? Taski; + di; V Tasky,; 2? Tasky; + dj

In order to perform all tasks using the same resource a sequential order must be established, these
precedence relations that are not known a priori are determinated by the solution to a scheduling problem.
This feature changes the nature of the probleni. and no efficient polynowmial algorithm can be exhibited for
solving all problems involving disjunctive constraints. In this section we present some techniques to deal with
disjunctive constraints.

3.1 Choice Point

The first approach used by the Constraint Logic Programming (CLP) community to deal with disjunctive
constraint was to choose one disjunct during the search process, i.e.. an a priori choice is made and one disjunct
is posted, if the resulting set of constraint is inconsistent then the other disjunct is chosen and posted. This
approach is based on the general idea of backtracking, the search space is not reduce actively but only when
a clause is non deterministically chosen possibly leading to combinatorial explosion. In the worst case 2VP
combinations of constraints have to be analvsed. where VD stand for the number of disjunctions. So, for

many problems such an approach introduces too many choice points and yields an unsatisfactory performance.

3Variable instantiation is also called iaBelling process.
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3.2 Binary Variables

Another techaique to -dead vith Disjroctive consiraiuts, widely ased by e Goerational Rosearch conunnnity,
ry =1

is to introduce binary (U, 1) variables [13]. Each of borli values activates one disjunct and deactivates the

other. A constraint is said activaved if it s teiviaily sarisiied for ail value combinations of all its variables.
This gives the effect of setring the constraint at a cheice point, but in this case the labelling routine can

select the variable for labelling at the best point in the search. Considering the disjunctive constraint

-
7 7 r 7 : \ T . - ! N ~
Dandos > Tusihn + oy Daskyy >0 Dasegg +

which establishes that on machine 4 job 7 runs hefore job j (first disjunct) or job j runs hefore job
(second disjunct). We introduce a binary variable .X,; € {0. 1} in the following way

T(l.\i}’\.‘ki + d,’\'r’

(1= \';) x M+ T(I.vll\',-,-__;

z
X« M+ Tushy; Z") Tisks; + (1;;/;

where M is a large cnonzii number. In this way we have transformed a disjunctive constraint in a
conjunction of two (’1(.’111“11{[“'_\ constraints. If X;; = | then the second constraint is active. trivially satisficd.
and the tirst disjunct will constraint the value of the variables, in other words, job ¢ runs before job j on
machine &.

As soon as a value is assigned (o the buiary variable during the solving process one disjroct will be entailed
by the set of constraints and the orher one will be used to reduce the variables domain. In the worst case the
labelling process will try values for the binary variables. using it as a choice point as in the first approach.

5.V D

i.e.in the worst case we also have ro analyse 2°¥7 cases.

3.3 Constructive Disjunction

A rather new approach is called constrctive disjunction. which lif‘?x‘ common information from the alternatives
[ We explain this idea using an ‘\unple taken [tem T16]. Consider the following set ol constraints that

nforces the mutual exclusion ot jobs 4 and B on machine 7

Tll»#'_\ + 7 Sq 'T:I.Sf]\'yn Y Tnl.S/v','B -7 Sq ’[."1.‘»‘[-';1‘
Taskiy €5 {L.... 10}

Task g <= {i. ... U._)}

The first disjunct constraints Tesh, Eq 11.2.3} md Tuskip e’ {3.9.107. the second disjunct constraints
Taskiy € {3910} and Tuusk: 5 £7 {1.2.3}. Thus independent which alternative will succeed we know that
neither Tusk;y nor Task.y caa take the values {1.5.5. 7}, The commen informaticn rhat we can decdhiea
from both alternatives is Task:y € {1.2.3.3.9. 10} and Tuskip €7 {1.2.3.3.9. 10}, the union of the set of

remaining values for the varia 'rs in each dispuner. This is the essence f ~onstrictive disjunction, extract

M - 1 1 [ 1
SO e Ll s o0 '.L' LI AT oew el Tt i s Ofine = Pl oo a R K
this extra information. disjunctive constrainfs are used actively without a priori choices. In the worst case.
. . AV
if not extra informaricen can be extracted from the disjunctions. the labelling process will analyse 27 cases.
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4 Systematic Manipulation of Disjunctive Constraints

ln this section we preseat our appreach for achieving local cousistency in CSP involving disjunctive con-
straiuts. The level of loeal consisrencs most widely used by the CSP community. are consistency. can be
achieved i a pohvnomial time tor wser ol »lementary constraints. but when we consider disjunctive constraints
the problem becomes harder. The general idea we propose is to decompose a probiem in two subproblemns,
the first one with all the elementary constraints and the second one with all the disjunctive constraints.
Local consistency can be achieved officiently [or the first subproblem. and the second subproblem is used to
exiract extra imlormation asing a constructive disjunction approach. As hoth subproblems share variables,
information about values of variables must be communicated, that is done through the use of membership
constraints. Figure 1 presents the general schemi considering the set of constraines in the form that we
explain in section 2.

Sohvertor

Sohver fur \

Disjunetive Constraints

Y /_J/

Elementary Consiraints
>

N
N \/\,7: S A

= <L)

Figure 1 Gener

Al schema for mnalpalaring the ser ol consteaints

A tor aser of disjpunetive constrainis s a hard probiem. we propose

Bt as verifiving loeal o nsiston:s
. ol

o decotupese the set of digjuaciive tratints as mnuch as pessibles Inoorder to do that we use a 2raph

decomposition alzorithm which will derect the nuctinuum nuimber of subproblems whose set of variables ave
Aigjeints. In this way we deal with a ser of easier problems. and the added cost is not significative since the

decomposition aloorirhin has o Huear fime complexity, Figure 2 presents the refined general schiema.

Coordination

M
“
~
<
P

— -

N

/’ 7 Sclver for

Figure 2: Refined general schema

Once we apply the graph decompaesition alzerirhim on the set of disjunctive constraints we obtain 1/
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subsels

so the mitial set C of disjunctive constoaiuls can be expressed by

and such that

Vice Lig ik F I Varlel) U Varle2, N0 Var(el;) G Var(e2;)) =9

In the diagram of figure 2 the coordination level is in charge ol decompese the set ol disjunctive coastraints
and add the adeguate member p constraints coming from the subproblem with elementary consrraints. In
the same way. the coordination level send to this subproblem the resulis obtained from the set of disjunctive
constraints.  Local consistency is verified for each subproblem and the results are communicated through
the membership constraints. the algorithm stops when there s no more changes in the set ol membership

constraints. For clarity reasons we express the sets of elementary and disjunctive constraints in the following

way
=M
i€
( 0= /\ ( RN
= i
where

These ideas are exprossed o he Pl avias

1 begin

2 Get 7 and 7 frorm the ser Gl consteaings

3 repeat

4 Verify Tocal consistency for O

5 Decompose € as /\“:, A

6 for each "5, do

T Verify local consistency using a constrnerive disjunetion approach
8 if vone of the constraints, ~1 an! .!J for ;= 008 e Covith rhe s =1 o oeonstraines thea
9 Eliminate the dis constraint from 7

10 Add the other elementary constraint to

11 endaf

12 endodo
Lo umril P et ol mend o rsads comist i s s ot
14 end

Theorem 1 The algorithun e rmrates and i is correct.
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Proof: Termination of local consistency algorithms is well known, so we only have to prove the termination
of the loop Repeat. In the worst case. after verification ol iocal consistency for all Cuy., the resulting
membership counstraints will be different because only oie element has been eliminated. as we have at most
n variables in the set of disjnnctive constraints and cach variable can fake @ values. the maximal number
of iterations is (an). so at most after (anj iterations the algorithm will serminate. Correctuess is evident

because we only eliminate values when they are locally inconsistent, so we do not eliminate any solution.

Theorem 2 If we can decompuse a sct of constraints in M subjraphs the worst case time complezity of our
algorithm is boundcd by M2VNP=M+1 whire ND s the Lolal number of disjunctive constiainls.

Proof: If ND;:i=1.... M denotes the number of disjunceive consteaints in the stbgraph /. in each itera-
tion we have to verify local consistency for Z}‘il 2VP4 sets of disjunctive constraints. As VD = Z‘}‘i] ND;.
we have Z}Zl 2N D, < M2YP=IEL ) the worst case M = 1. <o the worst case time complexity is O(2VP),
the same result as the choice point approach.

Evidently the use of our approach depends on the specific characteristics of the problem. TFirst. the
more we can decompese the set of disjunctive constraints the more efficient will be the use of constructive
disjunction because we will deal with easier problems (this is the meaning of the expression N2V P= MLy
Second. the benefits of using constructive disjunction Jepend on the oxtra information we can extract rom
the disjunctions, so the more restricted are the constraints rhe more information we can extract from them,
i.e.. more impossible values will be eliminated. That is why our approach must be seen as a preprocessing
step. alter that another technique should to be used, such as choice point. for example.

In [3] we have applied our approach to sclve job-shop problems where the general idea of decompose a
set of disjunclive constraints correspond to manipulate as a whole the counstraints related to a particular
machine but independently for different machines. so for probiems involving 1/ machines we are <ure rhat
we can decompese the sot of disjunctive constrainis i M subproblems.

Finally. it is important to note that our approach can be naturally implemented using several solvers in
parallel for verifying local consistency for the sets of disjiictives consi =uints.

4.1 Examples

Two advantages of the appreach presented in this work with respect to the choice point can be better
understood in the following examples. We consider the feilowing probien:

O (1
y S : (2)
o<y (5
e>" 1 S"’ b) (hH
gy oy <7 (5)
> b ! ]
vy € i) (7

Counstraints 1, 2 and 3 correspond to elementary constraiuts. constraints 1, 3 and 6 correspond to disjunc-

tive constraints. IF we verify locad consistoney for the set of elementary constraints we obfain the modifiedl

membership constraints v €7 [0...3]. y 2 [L.. 4] and =
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the set of Jisjunctive constraints -1 - 6 we obtain three subproblem. so we verify local consistency for each of
rhem nsing 2 coustructive disjniction approach.

Junetive e nstmint 1 and the associated membership coustraint

e Verifving local consisteney h T ‘
v 0.3 we obiain @ -E il ,.,l Pand o 2 [0, .03] Y Sou the resuliing membership constraint Using

a constriuctive disjunction approach is » € (0, ... 3], 1t is unchangel.

e di\junvti\'e consfraint 5 and the associated membership constraint

e Verifying local consistency for t
yo& T 4) we obtain y =7 20 4] anl y € [1...4]. So. the resulting membership constraint is
ye oo i is unchanged.

dstency for the disjunctive constraint 6 and the associated membership constraint
So. the resulting

e Verifving loval «
o _ . o -
s € [2....5], the first branch has no solurion and the second one = € [4....53].

menthership constraint s - = Th05)

know that only one disjunct is possible in the third disjunction. We

But, as addirional information we
. the only possible alternative

can post the second disjunct of the thivd disjunctive censtraint (constraimt 8)
in that disjunction. as an elemenrary consiraint. eliminate that Jdisjunctive constraint, and verily again local
consistency for the set of elementary constraints.

Another interesting situation oceurs if we replace the third disjuncrive constraint (constraint by the

following:
s> ov <

When we verify loeal consistety for this constraint and the membership constraint = € [1...5] both

disjnnet are inconsistent with the niembership constraint. so no value remalns possible for the variable = and

S the protiemn has nooscbi s 1 s inerosting to nete that this sitaation co ald have been also detected
asing achoice point appreach. b 10 well koowa rhat the nnn:hur Al Tenves vistted Dy that appreoach depend

cn the order of the input of the constraints. however the performance of our approach does not depend on
“hat order, TE we create the ol fes peints posting the disjunctive constraints in the order 55 and 6 e will
visit % deaves before detect that tie probiem has no selntion. bt if we
the third disjunctive constraint we have to visit only 2 leaves to verify that the problem has no solution.

We can oo how our approach ailows 1o reduce the search space and also eliiminate some disjunctive

create the choice points posting firstls

Constrins.

4.2 Implementation

[ in selving CSP ousing computational systens. a le
S We have i l« quented a prorarype of a solver for ('SP which is cur-
1 of computational systems”. We have integrate:

Al framework integrat-

In general. we ars interssted

ing rewrite rules and strategies
sently exscurabic in the system B LAN 51, an inferpr
in this prototype the ideas presented in this work as a preprocessing phase that carries out local con-
sistency verifieation.  Onee we have decomipesed the set of disjnnetive constraints in several subprob-

cerily local consistency in parnllell in this way we
Lo protatype can be ebiained ai

shlem in

lens we i a seluer foroeach s
e fulhy
attp://www.loria.fr/ castro,CSP/csp.hTml.

NS I

crofit of the advants

“To verity local consistency for these subproblems we use a choice point approach that generates two branchs, each one for
cach disjuner.

ELAN is available via ancnyov s fip ar fop.loria.frin rhe
information can be obtained at htt; //wwa.loria.fr/zquipe/protheo.html/PROJEC

directary /pub/loria/prothao/softsares/Elon. Furrher
3/ELA3/elan.html
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5

We

Conclusion

have presented an appioach to deal systematically with disjunctive constrainis in CSP when verifying

local consistency. We have shown how this approach can eventually reduce the search space and eliminate

some disjunctions. We have proved that when we can decompose the set of disjunctive constraints we can

do better than the existing approaches. like choice point. In real life problems, like scheduling. it is often
possible to decompose the set of disjunctive constraints. so we think that our approach can be an interesting
contribution for practical applications of ('SP techniques. As fuiure work we are interested in to estimate

the

Lenefits of apply this approach in terms of parameters of the set of constraints and we are also interested

in to integrate these ideas in the search process.
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